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Digital Signal Processing 
 Lab 1: Discrete Time Signals 

Matlab basics 

 
The basic elements in Matlab are numbers, variables, and operators. The basic type of variable is the 
matrix. One-dimensional matrices (row or column matrices) are called vectors. 
 
Examples of variable initialization: 

a=3                         % is a scalar 
a=[3]                       % is a scalar 
x=[1 2 3]                   % is a row vector 
y=[1; 2; 3]                 % is a column vector 
A=[1 2 3; 4 5 6; 7 8 9]     % is a matrix 

 
Note that 

● Discrete-time sequences are represented in Matlab by vectors (row or column matrices); 
● Numbers are represented with high precision and can be complex; 
● Indexes of matrixes always start from 1 and not from 0.  

 
The colon operator : can be used to generate sequences of numbers in a given range.  

>> a=1:10 
a = 
     1     2     3     4     5     6     7     8     9    10 
>> b=2:3:10   % from 2 to 10 with step 3 
b = 
     2     5     8  

 
The colon operator is also used to access certain row/column elements of a matrix. B=A(:,1) is the 

subset of A given by “column 1, all the rows”; the meaning of A(:) is “all the elements of A, read 

column by column and regarded as a single column”. See “help :” at the prompt of Matlab for further 
details. 

>> A=[1 2 3; 4 5 6; 7 8 9]; 
>> A(2:3,:) 
ans = 
     4     5     6 
     7     8     9 
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The command size(A) provides the size, in rows and columns, of the matrix A, while length(a) 

returns the length of a vector a. 
 
MATLAB provides many useful functions to create special matrices. These include:  

● zeros(M,N) for creating a matrix of all zeros,  

● ones(M,N) for creating matrix of all ones,  

● eye(N) for creating an N×N identity matrix. 
 

Scripts and functions 
A script is a text file that contains a sequence of commands, one on each line of the file, that have to be 
executed one after the other as though they were typed at the command prompt. 
Functions implement new routines, characterized by input and output parameters. A function file begins 
with the keyword function followed by an output-input variable declaration. 
Both scripts and functions files must have a .m extension (m-files) and must be in the current directory on 
in a directory of the path environment of Matlab. 
 
When time axes other than the sequence 1,2,3,...,N (or 0,1,2,...,N-1 with a unitary shift of the index) need 
to be represented for the sequence x, a time-axis vector t or a sample-index vector n will be associated to 

the vector x. 
 
The basic plotting command is plot(t,x), which generates a plot of x values versus t values. 
The following set of commands creates a list of sample points, evaluates the sine function at those points, 
and then generates a plot of a simple sinusoidal wave, putting axis labels and title on the plot. 

t = 0:0.01:2;        % sample points from 0 to 2 in steps of 0.01 
x = sin(2*pi*t);     % Evaluate sin(2 t) 
plot(t,x,'b');       % Create plot with blue line 
xlabel('t in sec'); ylabel('x(t)');    % Label axes 
title('Plot of sin(2\pi t)');          % Title plot 

 
 
 
For plotting a discrete-time sequence we will use the stem command which displays each data value 
with a small circle at the end of a line connecting it to the horizontal axis. 
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n = 0:1:40;                        % sample index from 0 to 40 

x = sin(0.1*pi*n);                 % Evaluate sin(0.1 n) 
stem(n,x);                         % Stem-plot  
xlabel('n'); ylabel('x(n)');       % Label axes 
title('Stem Plot of sin(0.1 \pi n)');      % Title plot 

 
If we want to create multiple plots within a graphical window, we can use the function subplot. 

subplot(r,c,i) splits the current graphical windows into a matrix of subplots (r rows by c 
columns) and activate the i-th subplot. 

figure           % open new figure window 
subplot(2,1,1)   % split into one column of two subplots and 
                 % select the first one 

plot(n,x,'-o'); % plot with line-circle style 
subplot(2,1,2)  % select the second subplot 
stem(n,x)       % stem the same x sequence 

 
The following commands generate a real-valued exponential sequence  x[n] = (0.9)n , 0 ≤ n ≤ 100 

>> n = [0:100]; x = (0.9).^n; 

while a complex-valued exponential sequence  x[n] = exp[(2 + j3)n], 0 ≤ n ≤ 100    is generated by 

>> n = [0:100]; x = exp((2+3j)*n); 

 
A sum of sinusoidal signals x[n] = 3 cos(0.1πn + π/3) + 2 sin(0.5πn) is obtained with  

>> n = [0:100]; x = 3*cos(0.1*pi*n+pi/3) + 2*sin(0.5*pi*n); 
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The rand(1,N) generates a length N random sequence whose elements are uniformly distributed 

between [0, 1]. The randn(1,N) generates a length N Gaussian random sequence with mean 0 and 
variance 1. 
 
To generate P periods of a periodic sequence  x̃[n] from one period {x[n], 0 ≤ n ≤ N −1}, we can copy 
x[n] P times: 

>> xtilde = [x,x,x,x,x,x]; 

but a more efficient way is to use the operator (:) on a matrix with columns that replicate the sequence x' 

>> xtilde = x' * ones(1,P);    % P columns of x; x is a row vector 
>> xtilde = xtilde(:);         % long column vector 
>> xtilde = xtilde';           % long row vector 

 
 

Basic sequences and operations 
We define now a set of functions (from Digital Signal Processing Using Matlab by Vinay K. Ingle, John 
G. Proakis). 
 
To implement a unit sample sequence 

 
over the n1 ≤ n0 ≤ n2 interval, we will use the following impseq function 
 

function [x,n] = impseq(n0,n1,n2) 
% Generates x(n) = delta(n-n0); n1 <= n <= n2 
% ---------------------------------------------- 
% [x,n] = impseq(n0,n1,n2) 
% 
n = [n1:n2]; x = [(n-n0) == 0]; 

 
To implement a unit step sequence 

 
over the n1 ≤ n0 ≤ n2 interval, we will use the following stepseq function 
 

function [x,n] = stepseq(n0,n1,n2) 
% Generates x(n) = u(n-n0); n1 <= n <= n2 
% ------------------------------------------ 
% [x,n] = stepseq(n0,n1,n2) 
% 
n = [n1:n2]; x = [(n-n0) >= 0]; 
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The following function sigadd implements the sample-by-sample addition of sequences. This 

operation requires that the sequences be defined over a common sample interval represented by n. This is 

obtained using the logical operation of intersection “&”, relational operations like “<=” and “==”, and the 

find function. 

function [y,n] = sigadd(x1,n1,x2,n2) 
% implements y(n) = x1(n)+x2(n) 
% ----------------------------- 
% [y,n] = sigadd(x1,n1,x2,n2) 
% 
y = sum sequence over n, which includes n1 and n2 
% x1 = first sequence over n1 
% x2 = second sequence over n2 (n2 can be different from n1) 
% 
n = min(min(n1),min(n2)):max(max(n1),max(n2)); % duration of y(n) 
y1 = zeros(1,length(n)); y2 = y1;              % initialization 
y1(find((n>=min(n1))&(n<=max(n1))==1))=x1;     % x1 with duration of y 
y2(find((n>=min(n2))&(n<=max(n2))==1))=x2;     % x2 with duration of y 
y = y1+y2;                                     % sequence addition 

 
A similar function sigmult implements the sample-by-sample multiplication (with the operator “.*”) 

function [y,n] = sigmult(x1,n1,x2,n2) 
% implements y(n) = x1(n)*x2(n) 
% ----------------------------- 
% [y,n] = sigmult(x1,n1,x2,n2) 
% 
y = product sequence over n, which includes n1 and n2 
% x1 = first sequence over n1 
% x2 = second sequence over n2 (n2 can be different from n1) 
% 
n = min(min(n1),min(n2)):max(max(n1),max(n2));  % duration of y(n) 
y1 = zeros(1,length(n)); y2 = y1;           
y1(find((n>=min(n1))&(n<=max(n1))==1))=x1;   % x1 with duration of y 
y2(find((n>=min(n2))&(n<=max(n2))==1))=x2;   % x2 with duration of y 
y = y1 .* y2;                                % sequence multiplication 

The shifting function sigshift has no effect on the vector x, but the support vector n is changed by 

adding k to each element. 

function [y,n] = sigshift(x,m,k) 
% implements y(n) = x(n-k) 
% ------------------------- 
% [y,n] = sigshift(x,m,k) 
% 
n = m+k; y = x; 
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The sigfold function implements the sign-reversal of the sample indexes n to get y[n]=x[-n] 

function [y,n] = sigfold(x,n) 
% implements y(n) = x(-n) 
% ----------------------- 
% [y,n] = sigfold(x,n) 
% 
y = fliplr(x); n = -fliplr(n); 

 
The summation of the sample values of x[n] between n1 and n2 is obtained with 

>> sum(x(n1:n2)) 

while the product of the sample values of x[n] between n1 and n2 is obtained with 

>> prod(x(n1:n2)) 

 
The energy of a sequence x[n] is given by 

	 ∗ |	 	|  

For a finite-duration sequence it can be computed in Matlab with 

>> Ex = sum(x .* conj(x)); % one approach 
>> Ex = sum(abs(x) .^ 2); % another approach 

 
Any arbitrary real-valued sequence x[n] can be decomposed into its even and odd components. This 
decomposition is implemented by the following evenodd function 

function [xe, xo, m] = evenodd(x,n) 
% Real signal decomposition into even and odd parts 
% ------------------------------------------------- 
% [xe, xo, m] = evenodd(x,n) 
% 
if any(imag(x) ~= 0) 
error('x is not a real sequence') 
end 
m = -fliplr(n); 
m1 = min([m,n]); m2 = max([m,n]); m = m1:m2; 
nm = n(1)-m(1); n1 = 1:length(n); 
x1 = zeros(1,length(m)); 
x1(n1+nm) = x; x = x1; 
xe = 0.5*(x + fliplr(x)); xo = 0.5*(x - fliplr(x)); 
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Examples: 

1.    Generate and plot the sequence      x[n] = δ[n + 2] − 2δ[n − 3], −5 ≤ n ≤ 5 

n = [-5:5]; 
x = impseq(-2,-5,5) - 2*impseq(3,-5,5); 
stem(n,x); title('Sequence in Example 1') 
xlabel('n'); ylabel('x(n)'); 

 
2.    Generate and plot the sequence       
x[n] = n (u[n] − u[n − 10]) + 10e−0.3(n−10) (u[n − 10] − u[n − 20]), 0 ≤ n ≤20 

n = [0:20];  
x1 = n.*(stepseq(0,0,20)-stepseq(10,0,20)); 
x2 = 10*exp(-0.3*(n-10)).*(stepseq(10,0,20)-stepseq(20,0,20)); 
x = x1+x2; 
stem(n,x); title('Sequence in Example 2') 
xlabel('n'); ylabel('x(n)'); 

 
3.    Generate and plot the sinusoidal sequence       
x[n] = 3cos(0.04πn), 0 ≤ n ≤ 200 

n = [0:200];  
x = 3*cos(0.04*pi*n); 
stem(n,x); title('Sequence in Example 3') 
xlabel('n'); ylabel('x(n)'); 

 
4.    Generate and plot, for −30 ≤ n ≤ 29, the periodical sequence x̃[n] obtained from one period  
x[n]=n+1, 0 ≤ n ≤ 9 

n = [-30:29];  
x = [1:10]; 
xtilde = x' * ones(1,6);          % one period in each column 
xtilde = (xtilde(:))';            % reshape into one single row 
stem(n,xtilde); title('Sequence in Example 4') 
xlabel('n'); ylabel('x(n)'); 

 
5.   Let x[n] = {1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1}, where the underline denotes the sample at n=0. 
Determine and plot the following sequences 

A. x1[n] = 2x[n − 5] − 3x[n + 4] 
B. x2[n] = x[3 − n] + x[n] x[n − 2] 

 

% A. 
n = -2:10; x = [1:7,6:-1:1]; 
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[x11,n11] = sigshift(x,n,5);  
[x12,n12] = sigshift(x,n,-4); 
[x1,n1] = sigadd(2*x11,n11,-3*x12,n12); 
stem(n1,x1); title('Sequence in Example 5.A') 
xlabel('n'); ylabel('x1(n)'); 

 
 

% B. 
n = -2:10; x = [1:7,6:-1:1]; 
 
[x21,n21] = sigfold(x,n);  
[x21,n21] = sigshift(x21,n21,3); 
[x22,n22] = sigshift(x,n,2);  
[x22,n22] = sigmult(x,n,x22,n22); 
[x2,n2] = sigadd(x21,n21,x22,n22); 
 
stem(n2,x2); title('Sequence in Example 5.B') 
xlabel('n'); ylabel('x2(n)'); 

 
6.    Generate and plot the sequence 

| |

5

5

 2 , 10 10 

n = [-10:10]; x = zeros(1,length(n)); 
for k = -5:5 
   x = x + exp(-abs(k))*impseq(2*k ,-10,10); 
end 
stem(n,x); title('Sequence in Example 6') 
xlabel('n'); ylabel('x(n)'); 

 
 
7.  Generate the complex-valued signal x[n] = e(−0.05+j0.3)n , −30 ≤ n ≤ 30 and plot its magnitude, phase, the 
real part, and the imaginary part in four separate subplots 
 

n = [-30:1:30]; alpha = -0.05+0.3j; 
x = exp(alpha*n); 
subplot(2,2,1);  
stem(n,real(x)); title('Real part'); xlabel('n') 
subplot(2,2,2);  
stem(n,imag(x)); title('Imaginary part'); xlabel('n') 
subplot(2,2,3);  
stem(n,abs(x)); title('Magnitude'); xlabel('n') 
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subplot(2,2,4);  
stem(n,(180/pi)*angle(x)); title('Phase'); xlabel('n') 

 
Compare the obtained plots with the graphical representation in the complex plane produced by 

figure; polar(angle(x),abs(x),'-o') 

 
8.  Decompose x[n] = u[n] − u[n − 10] into its even and odd components 
 

n = [0:10];  
x = stepseq(0,0,10)-stepseq(10,0,10); 
[xe,xo,m] = evenodd(x,n); 
 
subplot(2,2,1); stem(n,x); title('Rectangular pulse') 
xlabel('n'); ylabel('x(n)'); axis([-10,10,0,1.2]) 
subplot(2,2,2); stem(m,xe); title('Even Part') 
xlabel('n'); ylabel('xe(n)'); axis([-10,10,0,1.2]) 
subplot(2,2,4); stem(m,xo); title('Odd Part') 
xlabel('n'); ylabel('xe(n)'); axis([-10,10,-0.6,0.6]) 

Exercises 

1. Generate and plot the following sequences 
x1[n] = 3δ[n + 2] + 2δ[n] – δ[n – 3] + 5δ[n – 7],    −5 ≤ n ≤ 15        
x2[n] = 10u[n] − 5u[n – 5] − 10u[n – 10] + 5u[n – 15]               
x3[n] = e0.1n (u[n + 20] – u[n – 10]) 
x4[n] = 2(cos(0.49π n) + cos(0.51π n)),    −200 ≤ n ≤ 200 
x5[n] = 3 sin(0.01π n) · cos(0.5π n),   −200 ≤ n ≤ 200 
x6[n] = e−0.05n ·sin(0.1π n + π/3),   0 ≤ n ≤ 100 
x7[n] = {. . . , 3, 1, 0, -1, 2, . . .} periodic (plot 10 periods) 

 
2. Let x[n] = {2, 4, −3, 1, −5, 4, 7} (underline indicates n=0). Generate and plot the following sequences 

x1[n] = 2x[n – 3] + 3x[n + 4] – x[n] 
x2[n] = x[n + 3]x[n – 2] + x[1 – n]x[n + 1] 
x3[n] = 2e0.5n x[n] + cos (0.1π n) · x [n + 2] ,        −10 ≤ n ≤ 10 

 
3. Decompose the following sequences into their even and odd components and plot them 

x1[n] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} 
x2[n] = e0.1n · (u[n + 5] – u[n – 10])  
x3[n] = cos(0.2π n + π/4),   −20 ≤ n ≤ 20 
x4[n] =  e−0.05n ·sin(0.1π n + π/3) ·u[n] 
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Plots of exercise 1. 

 
Plots of exercise 2 

 
Plots of exercise 3 

 


