
1

Digital Signal Processing
 Lab 1: Discrete Time Signals

Matlab basics

The basic elements in Matlab are numbers, variables, and operators. The basic type of variable is the
matrix. One-dimensional matrices (row or column matrices) are called vectors.

Examples of variable initialization:

a=3 % is a scalar
a=[3] % is a scalar
x=[1 2 3] % is a row vector
y=[1; 2; 3] % is a column vector
A=[1 2 3; 4 5 6; 7 8 9] % is a matrix

Note that

● Discrete-time sequences are represented in Matlab by vectors (row or column matrices);
● Numbers are represented with high precision and can be complex;
● Indexes of matrixes always start from 1 and not from 0.

The colon operator : can be used to generate sequences of numbers in a given range.

>> a=1:10
a =
 1 2 3 4 5 6 7 8 9 10
>> b=2:3:10 % from 2 to 10 with step 3
b =
 2 5 8

The colon operator is also used to access certain row/column elements of a matrix. B=A(:,1) is the

subset of A given by “column 1, all the rows”; the meaning of A(:) is “all the elements of A, read

column by column and regarded as a single column”. See “help :” at the prompt of Matlab for further
details.

>> A=[1 2 3; 4 5 6; 7 8 9];
>> A(2:3,:)
ans =
 4 5 6
 7 8 9

2

The command size(A) provides the size, in rows and columns, of the matrix A, while length(a)

returns the length of a vector a.

MATLAB provides many useful functions to create special matrices. These include:

● zeros(M,N) for creating a matrix of all zeros,

● ones(M,N) for creating matrix of all ones,

● eye(N) for creating an N×N identity matrix.

Scripts and functions
A script is a text file that contains a sequence of commands, one on each line of the file, that have to be
executed one after the other as though they were typed at the command prompt.
Functions implement new routines, characterized by input and output parameters. A function file begins
with the keyword function followed by an output-input variable declaration.
Both scripts and functions files must have a .m extension (m-files) and must be in the current directory on
in a directory of the path environment of Matlab.

When time axes other than the sequence 1,2,3,...,N (or 0,1,2,...,N-1 with a unitary shift of the index) need
to be represented for the sequence x, a time-axis vector t or a sample-index vector n will be associated to

the vector x.

The basic plotting command is plot(t,x), which generates a plot of x values versus t values.
The following set of commands creates a list of sample points, evaluates the sine function at those points,
and then generates a plot of a simple sinusoidal wave, putting axis labels and title on the plot.

t = 0:0.01:2; % sample points from 0 to 2 in steps of 0.01
x = sin(2*pi*t); % Evaluate sin(2ߨt)
plot(t,x,'b'); % Create plot with blue line
xlabel('t in sec'); ylabel('x(t)'); % Label axes
title('Plot of sin(2\pi t)'); % Title plot

For plotting a discrete-time sequence we will use the stem command which displays each data value
with a small circle at the end of a line connecting it to the horizontal axis.

3

n = 0:1:40; % sample index from 0 to 40

x = sin(0.1*pi*n); % Evaluate sin(0.1ߨn)
stem(n,x); % Stem-plot
xlabel('n'); ylabel('x(n)'); % Label axes
title('Stem Plot of sin(0.1 \pi n)'); % Title plot

If we want to create multiple plots within a graphical window, we can use the function subplot.

subplot(r,c,i) splits the current graphical windows into a matrix of subplots (r rows by c
columns) and activate the i-th subplot.

figure % open new figure window
subplot(2,1,1) % split into one column of two subplots and
 % select the first one

plot(n,x,'-o'); % plot with line-circle style
subplot(2,1,2) % select the second subplot
stem(n,x) % stem the same x sequence

The following commands generate a real-valued exponential sequence x[n] = (0.9)n , 0 ≤ n ≤ 100

>> n = [0:100]; x = (0.9).^n;

while a complex-valued exponential sequence x[n] = exp[(2 + j3)n], 0 ≤ n ≤ 100 is generated by

>> n = [0:100]; x = exp((2+3j)*n);

A sum of sinusoidal signals x[n] = 3 cos(0.1πn + π/3) + 2 sin(0.5πn) is obtained with

>> n = [0:100]; x = 3*cos(0.1*pi*n+pi/3) + 2*sin(0.5*pi*n);

4

The rand(1,N) generates a length N random sequence whose elements are uniformly distributed

between [0, 1]. The randn(1,N) generates a length N Gaussian random sequence with mean 0 and
variance 1.

To generate P periods of a periodic sequence x̃[n] from one period {x[n], 0 ≤ n ≤ N −1}, we can copy
x[n] P times:

>> xtilde = [x,x,x,x,x,x];

but a more efficient way is to use the operator (:) on a matrix with columns that replicate the sequence x'

>> xtilde = x' * ones(1,P); % P columns of x; x is a row vector
>> xtilde = xtilde(:); % long column vector
>> xtilde = xtilde'; % long row vector

Basic sequences and operations
We define now a set of functions (from Digital Signal Processing Using Matlab by Vinay K. Ingle, John
G. Proakis).

To implement a unit sample sequence

over the n1 ≤ n0 ≤ n2 interval, we will use the following impseq function

function [x,n] = impseq(n0,n1,n2)
% Generates x(n) = delta(n-n0); n1 <= n <= n2
% --
% [x,n] = impseq(n0,n1,n2)
%
n = [n1:n2]; x = [(n-n0) == 0];

To implement a unit step sequence

over the n1 ≤ n0 ≤ n2 interval, we will use the following stepseq function

function [x,n] = stepseq(n0,n1,n2)
% Generates x(n) = u(n-n0); n1 <= n <= n2
% --
% [x,n] = stepseq(n0,n1,n2)
%
n = [n1:n2]; x = [(n-n0) >= 0];

5

The following function sigadd implements the sample-by-sample addition of sequences. This

operation requires that the sequences be defined over a common sample interval represented by n. This is

obtained using the logical operation of intersection “&”, relational operations like “<=” and “==”, and the

find function.

function [y,n] = sigadd(x1,n1,x2,n2)
% implements y(n) = x1(n)+x2(n)
% -----------------------------
% [y,n] = sigadd(x1,n1,x2,n2)
%
y = sum sequence over n, which includes n1 and n2
% x1 = first sequence over n1
% x2 = second sequence over n2 (n2 can be different from n1)
%
n = min(min(n1),min(n2)):max(max(n1),max(n2)); % duration of y(n)
y1 = zeros(1,length(n)); y2 = y1; % initialization
y1(find((n>=min(n1))&(n<=max(n1))==1))=x1; % x1 with duration of y
y2(find((n>=min(n2))&(n<=max(n2))==1))=x2; % x2 with duration of y
y = y1+y2; % sequence addition

A similar function sigmult implements the sample-by-sample multiplication (with the operator “.*”)

function [y,n] = sigmult(x1,n1,x2,n2)
% implements y(n) = x1(n)*x2(n)
% -----------------------------
% [y,n] = sigmult(x1,n1,x2,n2)
%
y = product sequence over n, which includes n1 and n2
% x1 = first sequence over n1
% x2 = second sequence over n2 (n2 can be different from n1)
%
n = min(min(n1),min(n2)):max(max(n1),max(n2)); % duration of y(n)
y1 = zeros(1,length(n)); y2 = y1;
y1(find((n>=min(n1))&(n<=max(n1))==1))=x1; % x1 with duration of y
y2(find((n>=min(n2))&(n<=max(n2))==1))=x2; % x2 with duration of y
y = y1 .* y2; % sequence multiplication

The shifting function sigshift has no effect on the vector x, but the support vector n is changed by

adding k to each element.

function [y,n] = sigshift(x,m,k)
% implements y(n) = x(n-k)
% -------------------------
% [y,n] = sigshift(x,m,k)
%
n = m+k; y = x;

6

The sigfold function implements the sign-reversal of the sample indexes n to get y[n]=x[-n]

function [y,n] = sigfold(x,n)
% implements y(n) = x(-n)
% -----------------------
% [y,n] = sigfold(x,n)
%
y = fliplr(x); n = -fliplr(n);

The summation of the sample values of x[n] between n1 and n2 is obtained with

>> sum(x(n1:n2))

while the product of the sample values of x[n] between n1 and n2 is obtained with

>> prod(x(n1:n2))

The energy of a sequence x[n] is given by

௫ܧ ൌ෍ݔሾ݊ሿ	ݔ∗ሾ݊ሿ

ஶ

ିஶ

ൌ෍|	ݔሾ݊ሿ	|ଶ
ஶ

ିஶ

For a finite-duration sequence it can be computed in Matlab with

>> Ex = sum(x .* conj(x)); % one approach
>> Ex = sum(abs(x) .^ 2); % another approach

Any arbitrary real-valued sequence x[n] can be decomposed into its even and odd components. This
decomposition is implemented by the following evenodd function

function [xe, xo, m] = evenodd(x,n)
% Real signal decomposition into even and odd parts
% ---
% [xe, xo, m] = evenodd(x,n)
%
if any(imag(x) ~= 0)
error('x is not a real sequence')
end
m = -fliplr(n);
m1 = min([m,n]); m2 = max([m,n]); m = m1:m2;
nm = n(1)-m(1); n1 = 1:length(n);
x1 = zeros(1,length(m));
x1(n1+nm) = x; x = x1;
xe = 0.5*(x + fliplr(x)); xo = 0.5*(x - fliplr(x));

7

Examples:

1. Generate and plot the sequence x[n] = δ[n + 2] − 2δ[n − 3], −5 ≤ n ≤ 5

n = [-5:5];
x = impseq(-2,-5,5) - 2*impseq(3,-5,5);
stem(n,x); title('Sequence in Example 1')
xlabel('n'); ylabel('x(n)');

2. Generate and plot the sequence
x[n] = n (u[n] − u[n − 10]) + 10e−0.3(n−10) (u[n − 10] − u[n − 20]), 0 ≤ n ≤20

n = [0:20];
x1 = n.*(stepseq(0,0,20)-stepseq(10,0,20));
x2 = 10*exp(-0.3*(n-10)).*(stepseq(10,0,20)-stepseq(20,0,20));
x = x1+x2;
stem(n,x); title('Sequence in Example 2')
xlabel('n'); ylabel('x(n)');

3. Generate and plot the sinusoidal sequence
x[n] = 3cos(0.04πn), 0 ≤ n ≤ 200

n = [0:200];
x = 3*cos(0.04*pi*n);
stem(n,x); title('Sequence in Example 3')
xlabel('n'); ylabel('x(n)');

4. Generate and plot, for −30 ≤ n ≤ 29, the periodical sequence x̃[n] obtained from one period
x[n]=n+1, 0 ≤ n ≤ 9

n = [-30:29];
x = [1:10];
xtilde = x' * ones(1,6); % one period in each column
xtilde = (xtilde(:))'; % reshape into one single row
stem(n,xtilde); title('Sequence in Example 4')
xlabel('n'); ylabel('x(n)');

5. Let x[n] = {1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1}, where the underline denotes the sample at n=0.
Determine and plot the following sequences

A. x1[n] = 2x[n − 5] − 3x[n + 4]
B. x2[n] = x[3 − n] + x[n] x[n − 2]

% A.
n = -2:10; x = [1:7,6:-1:1];

8

[x11,n11] = sigshift(x,n,5);
[x12,n12] = sigshift(x,n,-4);
[x1,n1] = sigadd(2*x11,n11,-3*x12,n12);
stem(n1,x1); title('Sequence in Example 5.A')
xlabel('n'); ylabel('x1(n)');

% B.
n = -2:10; x = [1:7,6:-1:1];

[x21,n21] = sigfold(x,n);
[x21,n21] = sigshift(x21,n21,3);
[x22,n22] = sigshift(x,n,2);
[x22,n22] = sigmult(x,n,x22,n22);
[x2,n2] = sigadd(x21,n21,x22,n22);

stem(n2,x2); title('Sequence in Example 5.B')
xlabel('n'); ylabel('x2(n)');

6. Generate and plot the sequence

ሾ݊ሿݔ ൌ ෍ ݁|௞|
5

௞ୀି5

ሾ݊ െ 2݇ሿ, െ10 ൑ ݊ ൑ 10

n = [-10:10]; x = zeros(1,length(n));
for k = -5:5
 x = x + exp(-abs(k))*impseq(2*k ,-10,10);
end
stem(n,x); title('Sequence in Example 6')
xlabel('n'); ylabel('x(n)');

7. Generate the complex-valued signal x[n] = e(−0.05+j0.3)n , −30 ≤ n ≤ 30 and plot its magnitude, phase, the
real part, and the imaginary part in four separate subplots

n = [-30:1:30]; alpha = -0.05+0.3j;
x = exp(alpha*n);
subplot(2,2,1);
stem(n,real(x)); title('Real part'); xlabel('n')
subplot(2,2,2);
stem(n,imag(x)); title('Imaginary part'); xlabel('n')
subplot(2,2,3);
stem(n,abs(x)); title('Magnitude'); xlabel('n')

9

subplot(2,2,4);
stem(n,(180/pi)*angle(x)); title('Phase'); xlabel('n')

Compare the obtained plots with the graphical representation in the complex plane produced by

figure; polar(angle(x),abs(x),'-o')

8. Decompose x[n] = u[n] − u[n − 10] into its even and odd components

n = [0:10];
x = stepseq(0,0,10)-stepseq(10,0,10);
[xe,xo,m] = evenodd(x,n);

subplot(2,2,1); stem(n,x); title('Rectangular pulse')
xlabel('n'); ylabel('x(n)'); axis([-10,10,0,1.2])
subplot(2,2,2); stem(m,xe); title('Even Part')
xlabel('n'); ylabel('xe(n)'); axis([-10,10,0,1.2])
subplot(2,2,4); stem(m,xo); title('Odd Part')
xlabel('n'); ylabel('xe(n)'); axis([-10,10,-0.6,0.6])

Exercises

1. Generate and plot the following sequences
x1[n] = 3δ[n + 2] + 2δ[n] – δ[n – 3] + 5δ[n – 7], −5 ≤ n ≤ 15
x2[n] = 10u[n] − 5u[n – 5] − 10u[n – 10] + 5u[n – 15]
x3[n] = e0.1n (u[n + 20] – u[n – 10])
x4[n] = 2(cos(0.49π n) + cos(0.51π n)), −200 ≤ n ≤ 200
x5[n] = 3 sin(0.01π n) · cos(0.5π n), −200 ≤ n ≤ 200
x6[n] = e−0.05n ·sin(0.1π n + π/3), 0 ≤ n ≤ 100
x7[n] = {. . . , 3, 1, 0, -1, 2, . . .} periodic (plot 10 periods)

2. Let x[n] = {2, 4, −3, 1, −5, 4, 7} (underline indicates n=0). Generate and plot the following sequences

x1[n] = 2x[n – 3] + 3x[n + 4] – x[n]
x2[n] = x[n + 3]x[n – 2] + x[1 – n]x[n + 1]
x3[n] = 2e0.5n x[n] + cos (0.1π n) · x [n + 2] , −10 ≤ n ≤ 10

3. Decompose the following sequences into their even and odd components and plot them

x1[n] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
x2[n] = e0.1n · (u[n + 5] – u[n – 10])
x3[n] = cos(0.2π n + π/4), −20 ≤ n ≤ 20
x4[n] = e−0.05n ·sin(0.1π n + π/3) ·u[n]

10

Plots of exercise 1.

Plots of exercise 2

Plots of exercise 3

