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Digital Signal Processing 
Lab 4: Transfer Functions in the Z-domain 

 
A very important category of LTI systems is described by difference equations of the following 
type 
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From which, through Z-transform we obtain 
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where H(z) is the transfer function of the system. 
In Matlab notation, as indexes must start from 1, if we consider the vectors a and b of the 
coefficients of the polynomials at numerator and denominator, after posing nb=length(b), 
na=length(a), we will have a representation of H(z) according to 

 
The transfer function H(z) is represented by means of the vectors a and b in several Matlab 
functions, as described in the following. 
 
zplane 
The function zplane creates a plot of the positions of zeros and poles in the plane of the complex 
variable z, with the unit circle for reference, starting from the coefficients a and b.  
Each zero is represented with a 'o' and each pole with a 'x' on the plot.  Multiple zeros and poles 
are     indicated by the multiplicity number shown to the upper right of the zero or pole. 
The function is called as: zplane(b,a)  
where b and a are row vectors. It uses the function roots to calculate the roots of numerator and 
denominator of the transfer function. 
 

Example-1: H z
.

  

b=[2 2 1]; 
a=[1 -0.8]; 
zplane(b,a); 
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impz 
The function impz computes the impulse response of a system starting from the coefficients b 
and a. 
[h,t]=impz(b,a) produces the impulse response in vector h and the time axis in vector t. 
If the output arguments h and t are omitted, a plot of the impulse response is directly displayed. 
If the impulse response is of infinite length, only its initial part is computed. 
 

Example 2: H z
.

 (system with a pole in z=0.9) 

b=1; 
a=[1 -0.9]; 
[h,t]=impz(b,a); 
stem(t,h); 

 
 
freqz 
The function freqz is used to compute the frequency response of systems expressed by difference 
equations or rational transfer functions. 
 
[H,w]=freqz(b,a,N); 
where N is a positive integer, returns the frequency response H and the vector w with the N 
angular frequencies at which H has been calculated (i.e. N equispaced points on the unit circle, 
between 0 and π). If N is omitted, a default value of 512 is assumed. If no output argument is 
specified, the amplitude plot and the phase plot of the frequency response are directly displayed. 
  
[H,w]=freqz(b,a,w); 
where w is a vector of frequencies (in radians, e.g. w=-pi:1/100:pi;) computes the frequency 
response at the frequencies specified by w. This function can be used to evaluate the DTFT of a 
sequence x on any desired set of frequencies w, e.g. with the command [X,w]=freqz(x,1,w); 
See help freqz for a complete reference. 
 

Example 3: H z
.

,  i.e. a system with exponentially decaying impulse response  

h[n]=  (0.9)n u[n] 

b=1; 
a=[1 -0.9]; 
[H,w]=freqz(b,a); 
subplot(211) 
plot(w/pi, 20*log10(abs(H))); % amplitude plot in decibel 
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xlabel('frequency in \pi units'); ylabel('Magnitude in dB'); 
title('Magnitude Response') 
subplot(212) 
plot(w/pi, angle(H)/pi);      % phase plot 
xlabel('frequency in \pi units'); ylabel('Phase in radians/\pi'); 
title('Phase Response') 

 
 
Example 4: h[n]=u[n]-u[n-L] 

L=11; 
b=ones(1,L); 
w=-pi:1/100:pi; 
[H,w]=freqz(b,1,w); 
subplot(211) 
plot(w/pi,abs(H));          % amplitude plot  
subplot(212) 
plot(w/pi, angle(H)/pi);      % phase plot 

 
Note that, if L is odd, h[n+(L-1)/2] is a real and symmetric sequence, therefore... 

subplot(311) 
plot(w/pi,real(H.*exp(j*w*(L-1)/2)))    % it is actually real 
subplot(312) 
plot(w/pi,imag(H.*exp(j*w*(L-1)/2)))    % should be zero but... 
subplot(313) 
plot(w/pi, angle(H.*exp(j*w*(L-1)/2))/pi); % phase plot 

 
 

Example 5: H z
.

.
,  i.e. a system with truncated exponentially decaying impulse 

response h[n]=0.9n (u[n]-u[n-8]) 

b=[1 0 0 0 0 0 0 0 -(0.9)^8]; 
a=[1 -0.9]; 
[H,w]=freqz(b,a); 
subplot(211) 
plot(w/pi, 20*log10(abs(H))); % amplitude plot in decibel 
subplot(212) 
plot(w/pi, angle(H)/pi);      % phase plot 

Check also: impz(b,a); zplane(b,a); 
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filter 
The function filter implements the filtering of an input sequence x, starting from a transfer 
function H(z) expressed as ratio between polynomials in z-1 with coefficients given by vectors b 
(numerator) and a (denominator). 
 
The filter is applied to an input sequence x with the Matlab command 
y=filter(b,a,x); 
 

Example 6: 
.

,  (corresponding to h[n]=  (0.9)n u[n] ) 

x=[1 zeros(1,100)];   % represents a delta pulse 
b=1; 
a=[1 -0.9]; 
y=filter(b,a,x); 
stem(y);    % we get the impulse response  

 
 
tf2zp 
The command [z,p,k]=tf2zp(b,a) finds zeros, poles and gain of the transfer function associated to 
coefficients b and a 
 
zp2tf 
The command [b,a]=zp2tf(z,p,k) 
finds the coefficients b and a of the associated transfer function, given a set of zero locations in 
vector z, a set of pole locations in vector p, and a gain in scalar k. 
 
Example 7: Design a low pass filter using pole-zero placement and then: 

 Convert the pole-zero representation to a rational transfer function representation 

 Make a plot of the desired magnitude and phase response 
 

p=[0.5;0.45+0.5i;0.45-0.5i];  % poles 
z=[-1;i;-i];                  % zeros 
 
zplane(z,p)     % check positions in the plane of z 
pause 
k=1; 
[num, den]=zp2tf(z,p,k); 
[H,w]=freqz(num,den); 
subplot(2,1,1) 
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plot(w/pi,abs(H)); 
title('\midH(e^j^\omega)\mid'); 
subplot(2,1,2); 
plot(w/pi,angle(H)); 
title('arg(H(e^j^\omega))') 

 
 
Example 8: Design of a simple all-pass filter. 
 

% Define a simple pair of conjugate poles: 
z0 = 0.9*exp(j*0.1*pi); z1 = z0'; 
% poly() gives the polynomial coefficients for these roots 
a = poly([z0 z1]) 
%a = 1.0000   -1.7119    0.8100 
% For an allpass filter, numerator coefficients are simply the reverse 
b = fliplr(a); 
 
zplane(b,a); 
pause 
 
% Look at the response: 
[H,w]=freqz(b,a); 
subplot(211) 
plot(w/pi,abs(H)); 
title('\midH(e^j^\omega)\mid'); 
subplot(212); 
plot(w/pi,angle(H)); 
title('arg(H(e^j^\omega))') 

 
 
From the properties of the Z-transform we know that the time-domain convolution operation 
corresponds to a multiplication between the transforms in the Z domain. 
 
Example 9: If we have two polynomials X1(z) = 2 + 3z−1 + 4z−2 and X2(z) = 3 + 4z−1 + 5z−2 + 
6z−3, their product X3(z) = X1(z)X2(z) can be obtained by means of the convolution of the 
sequences corresponding to the inverse Z-transforms, i.e. x1={2, 3, 4} and x2={3, 4 , 5, 6}: 
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x1 = [2,3,4]; x2 = [3,4,5,6];  
x3 = conv(x1,x2) 
 
>> x3 = 6 17 34 43 38 24 

Hence X3(z) = 6 + 17z−1 + 34z−2 + 43z−3 + 38z−4 + 24z−5 

Partial fraction expansion 

 
Given a rational transfer function 

 
X(z) can be expressed, by means of partial fraction expansion, as 
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We can derive such a partial fraction expansion by means of the Matlab function residuez. 
[A,p,C]=residuez(b,a) computes the constants on the numerator (Ak, known as also residues), 
poles (pk), and direct terms (Ck) of X(z). 
The returned column vector A contains the residues, column vector p contains the pole locations, 
and row vector C contains the polynomials terms when M≥N. 
 
Example 10: Derive analytically and plot the impulse response of the system with transfer 
function 

 

b = [0,1]; a = [3,-4,1]; [A,p,C] = residuez(b,a) 
 
A = 
    0.5000 
   -0.5000 
p = 
    1.0000 
    0.3333 
C = 
     [] 
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which leads to the following partial fraction expansion: 

 
The corresponding impulse response is h n 0.5u n 0.5 1 3⁄ u n  

n=0:30; 
h=A(1)*p(1).^n + A(2)*p(2).^n; 
stem(n,h);        % compare with impz(b,a) 

 

Example 11: The z-transform of a signal x[n] is given as  
2
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. Determine 

the partial fraction expansion.  
 

b = [1, 0, -0.64]; a = [1, -0.2, -0.08]; [A,p,C] = residuez(b,a) 
 
A = 
-2 
-5 
p = 
 0.4 
-0.2 
C = 
8 

which leads to the following partial fraction expansion:   1 1
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. Derive 

analytically x[n] considering the possible ROCs.  
 
Additional Exercises 
 
Exercise 12. Given a causal system specified by the difference equation  
y n x n 1 1.2x n 2 x n 3 1.3y n 1 1.04y n 2 0.222y n 3  
• plot the frequency response (amplitude and phase) using freqz  
• check zero and pole positions using zplane  
• determine zeros and poles using roots, or using [z,p,k]=tf2zp(b,a)  
• plot the impulse response using impz  

 
 
Exercise 13. Given the difference equation 
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y n 0.4y n 1 0.12y n 2 x n 2x n 1  
• compute:  

o the corresponding transfer function H(z)  
o the partial-fraction expansion of H(z), using [r,p,k]=residuez(b,a)  
o the consequent analytic expression of the impulse response h[n]  

• compare the plot of the computed h[n] with the one produced by means of impz  
• compare also with the sequence y produced by  x=[1 zeros(1,N)]; y=filter(b,a,x);  

 
 
Exercise 14. Compute and plot the frequency response of  

H z
0.15 1 z

1 0.5z 0.7z
 

for 0≤ω≤π.  
What type of filter does it represent? Check what changes if instead we use 

H z
0.15 1 z

0.7 0.5z z
 

Make use of freqz, zplane, impz 
 
--------------------------------------------------------------------------------------------------------------------- 
 
The following script shows an animation based on the geometrical representation of the effect of 
poles and zeros of a given transfer function into magnitude and phase responses, as a function of 
the frequency. The number and positions of zeros and poles can be easily changed to investigate 
different configuration. The parameter of the function pause can be modified to adjust the speed 
of the animation 
 

% Zeros/poles and Transfer Function animation 
% script adapted from code by prof. Dan Ellis, Columbia University, USA 
 
% Define the poles/zeros 
% Two-pole, two-zero example 
zz = [0.8*exp(j*pi*0.3) 0.8*exp(j*pi*-0.3)].'; 
pp = [0.9*exp(j*pi*0.3) 0.9*exp(j*pi*-0.3)].'; 
 
ymax = 2; 
 
bb = poly(zz); 
aa = poly(pp); 
 
% Steps around the top half of the unit circle 
ww = [0:200]/200*pi; 
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% Lay out the display 
subplot(121); 
zplane(pp,zz); 
 
% fixed axes for magnitude plot 
subplot(222) 
fax = [0 1 0 ymax]; 
axis(fax) 
grid 
 
% fixed axes for phase plot (pi-normalized) 
subplot(224) 
pax = [0 1 -1 1]; 
axis(pax); 
grid 
 
 
GG = polyval(bb,exp(j*ww))./polyval(aa,exp(j*ww)); 
HH = abs(GG); 
PP = angle(GG); 
 
% plot the frames 
for i = 1:length(ww); 
 
  w = ww(i); 
  z = exp(j*w); 
 
  % Evaluate the z transform at this point 
  Gz = polyval(bb,z)./polyval(aa,z); 
   
  HH(i) = abs(Gz); 
  PP(i) = angle(Gz); 
   
  % Make the plots 
  subplot(121) 
  zplane([0],[]); 
  hold on 
  plot(real(z),imag(z),'sg'); 
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  % Add omega parameters 
  for www = -0.8:0.2:0.8 
    ejw = exp(j*www*pi); 
    ll = sprintf('%.1f\\pi',www); 
    text(real(ejw), imag(ejw), ll); 
  end 
   
  % Plot and connect to all the poles and zeros 
  for r = pp.' 
 plot(real(r),imag(r), 'xr'); 
 plot([real(r), real(z)], [imag(r), imag(z)], '-r'); 
  end 
  for r = zz.' 
 plot(real(r),imag(r), 'ob'); 
 plot([real(r), real(z)], [imag(r), imag(z)], '-g'); 
  end 
  hold off 
   
  subplot(222) 
  plot(ww/pi, HH, w/pi, HH(i), 'sg',[w/pi w/pi], [0 HH(i)], '-g'); 
  axis(fax) 
  grid 
  title('magnitude'); 
 
  subplot(224) 
  plot(ww/pi, PP/pi, w/pi, PP(i)/pi, 'sg'); 
  axis(pax) 
  grid 
  title('phase'); 
  xlabel('\omega / \pi'); 
  set(gca, 'YTick', [-1 -0.5 0 0.5 1]) 
  set(gca, 'YTickLabel', [' -pi ';'-pi/2';'  0  ';' pi/2'; '  pi ']) 
 
  pause(0.1);  % adjust the speed 
end 

 
 


